Parallel Approaches for Intervals Analysis of Variable Statistics in Large and Sparse Linear Equations with RHS Ranges

نویسنده

  • Peerayuth Charnsethikul
چکیده

This study proposes an algorithm capable of working in parallel for solving large and sparse linear equations under given right hand side (RHS) ranges. A comparative study to the direct linear programming method is reported theoretically, computationally and discussed. Moreover, the approach can be adapted for the system under domain decompositions structure leading to a better efficiency experimentally.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Entropy Generation of Variable Viscosity and Thermal Radiation on Magneto Nanofluid Flow with Dusty Fluid

The present work illustrates the variable viscosity of dust nanofluid runs over a permeable stretched sheet with thermal radiation. The problem has been modelled mathematically introducing the mixed convective condition and magnetic effect. Additionally analysis of entropy generation and Bejan number provides the fine points of the flow. The of model equations are transformed into non-linear or...

متن کامل

On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize

Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...

متن کامل

LINEAR HYPOTHESIS TESTING USING DLR METRIC

Several practical problems of hypotheses testing can be under a general linear model analysis of variance which would be examined. In analysis of variance, when the response random variable Y , has linear relationship with several random variables X, another important model as analysis of covariance can be used. In this paper, assuming that Y is fuzzy and using DLR metric, a method for testing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007